3 research outputs found

    Variation-based Cause Effect Identification

    Full text link
    Mining genuine mechanisms underlying the complex data generation process in real-world systems is a fundamental step in promoting interpretability of, and thus trust in, data-driven models. Therefore, we propose a variation-based cause effect identification (VCEI) framework for causal discovery in bivariate systems from a single observational setting. Our framework relies on the principle of independence of cause and mechanism (ICM) under the assumption of an existing acyclic causal link, and offers a practical realization of this principle. Principally, we artificially construct two settings in which the marginal distributions of one covariate, claimed to be the cause, are guaranteed to have non-negligible variations. This is achieved by re-weighting samples of the marginal so that the resultant distribution is notably distinct from this marginal according to some discrepancy measure. In the causal direction, such variations are expected to have no impact on the effect generation mechanism. Therefore, quantifying the impact of these variations on the conditionals reveals the genuine causal direction. Moreover, we formulate our approach in the kernel-based maximum mean discrepancy, lifting all constraints on the data types of cause-and-effect covariates, and rendering such artificial interventions a convex optimization problem. We provide a series of experiments on real and synthetic data showing that VCEI is, in principle, competitive to other cause effect identification frameworks

    Multi-level Attention Model for Weakly Supervised Audio Classification

    Get PDF
    In this paper, we propose a multi-level attention model to solve the weakly labelled audio classification problem. The objective of audio classification is to predict the presence or absence of audio events in an audio clip. Recently, Google published a large scale weakly labelled dataset called Audio Set, where each audio clip contains only the presence or absence of the audio events, without the onset and offset time of the audio events. Our multi-level attention model is an extension to the previously proposed single-level attention model. It consists of several attention modules applied on intermediate neural network layers. The output of these attention modules are concatenated to a vector followed by a multi-label classifier to make the final prediction of each class. Experiments shown that our model achieves a mean average precision (mAP) of 0.360, outperforms the state-of-the-art single-level attention model of 0.327 and Google baseline of 0.314.Comment: 5 pages, 3 figures, Submitted to Eusipco 201
    corecore